A Fuzzy ANP Based Weighted RFM Model for Customer Segmentation in Auto Insurance Sector

نویسندگان

  • Ahad Zare Ravasan
  • Taha Mansouri
چکیده

Data mining has a tremendous contribution for researchers to extract the hidden knowledge and information which have been inherited in the raw data. This study has proposed a brand new and practical fuzzy analytic network process (FANP) based weighted RFM (Recency, Frequency, Monetary value) model for application in K-means algorithm for auto insurance customers’ segmentation. The developed methodology has been implemented for a private auto insurance company in Iran which classified customers into four “best”, “new”, “risky”, and “uncertain” patterns. Then, association rules among auto insurance services in two most valuable customer segments including “best” and “risky” patterns are discovered and proposed. Finally, some marketing strategies based on the research results are proposed. The authors believe the result of this paper can provide a noticeable capability to the insurer company in order to assess its customers’ loyalty in marketing strategy. A Fuzzy ANP Based Weighted RFM Model for Customer Segmentation in Auto Insurance Sector

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services

The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...

متن کامل

Knowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services

The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...

متن کامل

Study of Customer Segmentation for Auto Services Companies Based on RFM Model

This paper aims to explore the applicability of the RFM (Recentness,Frequency,Monetary) model in the customer segmentation of auto services companies, for which it obtains the weight of each index through the method of analytic hierarchy process (AHP) and segments the customers with K-means clustering method. This paper divides customers into several segments by comparing customer lifetime valu...

متن کامل

Customer behavior mining based on RFM model to improve the customer relationship management

Companies’ managers are very enthusiastic to extract the hidden and valuable knowledge from their organization data. Data mining is a new and well-known technique, which can be implemented on customers data and discover the hidden knowledge and information from customers' behaviors. Organizations use data mining to improve their customer relationship management processes. In this paper R, F, an...

متن کامل

New Approach for Customer Clustering by Integrating the LRFM Model and Fuzzy Inference System

This study aimed at providing a systematic method to analyze the characteristics of customers’ purchasing behavior in order to improve the performance of customer relationship management system. For this purpose, the improved model of LRFM (including Length, Recency, Frequency, and Monetary indices) was utilized which is now a more common model than the basic RFM model apt for analyzing the cus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJISSS

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015